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first order in B! is 

-if(niN>+o)2-niN-o)i)(Ndk2\ U+\N6kl) . (E21) 

Evaluating (E21) to second order in g2, we obtain 
according to Eqs. (A16) and (A17) given in Appendix 
A, 

—if(inN'+o)2—mN—coi)( 5k2tkl-{ 
\ (^icoa)1^ 

Xl(o)2-ooi+2ia)(mN+o)1-mv+ia)J-1 J . (E22) 

The first and second terms in (E22) are, respectively, 
the amplitudes for diagrams (ii) and (iii), Fig. 3. 
To order g2, the contribution to the probability of find­
ing the 6 particle in the energy interval w ^ w ^ e due 
to the interference between these amplitudes is given 

RECENTLY, Feinberg and Pais1 have developed a 
theory of higher-order corrections to weak inter­

actions mediated by charged W mesons of spin one. 
Their discussion of the leptonic processes, based on an 
approximate solution to a regularized ladder approxi­
mation BS equation, has been verified by Pwu and Wu.2 

Recently, however, Bardakci, Bolsterli, and Suura3 

have remarked that the sum of the unregularized ladder 
graphs has, in configuration space, an essential singu­
larity on the light cone which cannot be regularized 
away. Thus the procedures of regularization and sum­
mation apparently do not commute, and in the sense of 
BBS, this interaction is not renormalizable. 

The purpose of this paper is to suggest a mechanism 
whereby the crossed graphs without the aid of regulari­
zation may provide sufficient damping to prevent the 
occurrence of an essential singularity. This conjecture is 

*. Supported in part by a Sloan Foundation grant for mathe­
matical physics. 

1 G. Feinberg and A. Pais, Phys. Rev. 131, 2724 (1963). 
2 Y. Pwu and T. T. Wu, Phys. Rev. 133, B1299 (1964). 
3 K. Bardakci, M. Bolsterli, and H. Suura, Phys. Rev. 133, 

B1273 (1964). 

M . N A U E N B E R G 

by 
g2 re duk 

— \K^N'-mN)\2 / . (E23) 
4TT2 JmQ (mN+o)-mv)

2 

In Eq. (E23), we have summed over initial states of the 
6 particle in the same energy interval. Now if we add 
Eqs. (E20) and (E23) we see that the combined transi­
tion probability is finite in the limit n —»0. 

Remark 

Note that Eq. (E22) differs from the usual Feynman 
amplitude in the factor 2 multiplying a. This factor 
can be neglected in the nondiagonal elements of the U 
matrix, but is essential here, since we are evaluating 
the interference term with the disconnected process, 
diagram (ii) Fig. 3, at ki=k2. 

made here within the context of the weak interactions, 
but the mechanism might be expected to be relevant to 
the renormalization of other vector meson theories. 

A standard way of writing the BS amplitude (omit­
ting self-energy, vertex, and closed fermion loop com­
plications) is in terms of the iteration of an irreducible 
kernel or amplitude 

T=Ti+TiXT, (1) 

where, as illustrated in Fig. 1, the irreducible amplitude 
is defined to be the sum of all the irreducible Feynman 
graphs. The use of a finite-order expansion (~g2n) of the 
irreducible amplitude leads, in the approximation of 
neglecting 4-momenta but not momentum transfer,4 to 
BS equations whose solutions apparently contain 
essential singularities, with the severity of the singu­
larity increasing with order n. For example, for n=2, 
one obtains for the "forbidden" crossed graph amplitude 

4 An additional simplifying approximation, equivalent to 
iterating only the "most singular part" of the irreducible ampli­
tude expansion, has been made here. For n — 2 this corresponds to 
iterating not the simplest crossed graph but, rather, its value 
between spinors. 
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A possible damping mechanism is suggested to prevent the occurrence of essential singularities, such as 
that found on the light cone by Bardakci, Bolsterli, and Suura, when finite order expansions of the irreducible 
Bethe-Salpeter amplitude are iterated in configuration space without prior regularization. An infinite num­
ber of irreducible Feynman graphs are considered and approximated by a "peratization" method; a simple 
example is found in which the light cone damping, obtained by Feinberg and Pais by summing over the 
regularized ladder graphs, is reproduced by this crossed graph method. 
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a light cone singularity of form exp(l/x2); in compari­
son, the behavior found by BBS for the ladder graphs 
has the form exp[l/(x2)1/2]. 

Clearly, what is of interest here is the behavior of the 
entire irreducible amplitude. This is too ambitious a 
project; however, it is possible to write a modification 
of (1) which will incorporate an infinite sum of a particu­
lar class of irreducible graphs. The summation may be 
extended to include the iterations of these graphs, and 
further, the class of irreducible graphs can easily be 
enlarged. Only the simplest of these possibilities is 
considered here. Specifically, (1) is approximated by 

r^H-zvxr+Sn'zv, (2) 

where T^ denotes the two lowest order (g2 and g4) terms 
of T\ and 2)»'7V denotes a partial sum over the irre­
ducible graphs generated by the insertion of lower order 
(reducible and irreducible) graphs between a pair of 
crossed lines, as illustrated in Fig. 2. For the moment, 
to simplify the discussion, we neglect the isotopic 
factors which separate the contributions of different 
graphs into one "allowed" and two "forbidden" 
amplitudes.5 (In a neutral vector-meson theory, which 
results from the neglect of all isotopic factors, one, of 
course, needs no such mechanism to eliminate mass 
shell singularities, since the latter are removed by very 
special gauge-type cancellations resulting from the 
coherent addition of all ladder and crossed graphs.) 

Consider now the "gradient" portion of the last term 
of (2). This is obtained by the replacement of Ay* (0—6) 
by fjr2dlJ,

adv
hAF(a—b) in both (of the explicit) crossed 

boson lines; here, /x represents the TF-meson mass, and 
the configuration space coordinates bearing subscripts 1 
are to refer to lepton A, while those with subscript 2 
refer to lepton B. Neglecting isotopic YA.S5 and un­
important proportionality factors, this is given by 

< / • X j SP
A(X1-UI)SFB(X2-U2)T(U;V) 

XSP
A(v1-y1)SF

B(v2-y2)y<,Ayx
B, (3) 

5 Corresponding to the interaction Lagrangian 

£'=*(g/^fc,7M(l+75)<r« W ^ e + (e <-> /i), 
where 

w^ = W^LW^-w+i, WV3)=o, 
the scattering amplitude may be split into three parts; T=paTa 
~\-pfTf+peTe. Here, Ta denotes the "allowed" amplitude (e.g., 
for the process e~-\-vli —> *>e+Af~), 1 / denotes the "forbidden" 
amplitude (e.g., 6~4-*v —> e~-\-vfl) which is represented in lowest 
order by a two-rung ladder graph, and Tc denotes the "forbidden" 
amplitude (e.g., e~-j-jjT —* e~~~\-pT) which in lowest order is given 
by the simplest crossed graph. The operators pa,f,c are given by 

2 

pa = i 2 ayV*, */ = $ [ ! - T S W I pc = Kl+<r3A<r3Bl 

and are linearly related to the three projection operators pi, 2,3; 
Pl^KPf+Pal, p2z=i[.Pf — pa~]> pi^Pc 

4-

8 - H'H 
FIG. 1. The BS equation denned in terms of the 

iteration of the irreducible amplitude. 

where T(x;y) = T(xiyi,x2y2) denotes the configuration-
space BS amplitude. In momentum space (3) becomes 

Xlk2(k2+q2)~1lBf(q1+khp1-k2yq2+k2,p2-k1) 

Xl(k2-P1)-'k2]Al(k1~P2)-1k1^y (4) 

where T(qipi,q2p2) denotes the Fourier transform of 
T(xiyi,X2y2)* We now make a peratization approxima­
tion to (4), defined by dropping all external momenta, 
compared to virtual momenta in the spinor factors only, 

•(g/fxYJdhAFih)! ^ 2 S F ( ^ 2 ) 

XT(qi+ki, pi—k2, q2+k2, p2—h). (5) 

This is exactly what would occur if (4) were sandwiched 
between the appropriate zero-mass lepton spinors; 
that is, each irreducible graph generated by the iteration 
of (2) will have the form (5) between spinors, although 
it is not necessarily true that the sum of all such terms 
is equivalent to the solution of (2) between spinors. 
This replacement of (4) by (5) is, in configuration space, 
equivalent to the replacement of (3) by 

- (g/fiYAF(x1~y2)AF(x2-yi)T(x; y). (6) 

Hence the peratized part of this infinite sum of irre­
ducible graphs is simply proportional to the scattering 
amplitude, and (2) can be rewritten in the form 

T~[\+(g/ixYAF{x1--y2)AF(x2--yi)'Y1 

,X{7Y+7YXr}; (7) 

, e+c, 

FIG. 2. A representation of an approximate BS equation, whose 
iteration generates an infinite number of irreducible graphs. 
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for simplicity, the corrections to (6) and other higher 
order graphs have been omitted from the right side 
of (7). 

Introducing the proper isotopic and 75 factors, one 
finds in place of (7) three related equations for the 
amplitudes Ta, Tf, Tc; 

Ta=*ll+16(g/txyAF(x1-y2)AF(x2-y1)l-
1 

X{7V+7VX7V}. (8) 

Tf=TB*XTa, (9) 

Tc=ll+16(g/fiyAF(x1-y2)AF(x2-y1)T
l 

XiTc'+Tc'XTe}, (10) 
where TV and TV denote the one-boson exchange and 
simplest crossed graph, respectively. Equations (8) and 
(9) differ from the coupled-ladder graph equations by 
the inclusion of the extra denominator term; a similar 
remark holds for the decoupled crossed-graph equation 
(10). 

Whether or not these extra denominator factors lead, 
in general, to well-damped Fourier transforms is not 
immediately apparent; that this may be the case is 
suggested by the explicit damping which does occur in 
simple approximations to these equations. Working 
with (10), for example, it is possible to define 

Tc(x;y) = C(x1—x2) 
Xtl+16(g/fxyAF(x1-y2)AF(x2-y1)']-1Mc(x; y), 

where 

C(X) = 4 ( ^ ) 4 C T M ( 1 + T 6 ) ] ^ C % ( 1 + 7 5 ) > 

XdfXAF(x)dvAF(x), 
and4 

Mc(x; y) = 8(xi-y1)8(x2-y2) 

+ j SF
A(xi—Ui)SF

B(x2—u2)C(ui—u2) 

0 1+16(- ) AF{ui-y2)AF(u2-yi)\ Mc(u;y). (11) 

If Mc(x; y) = Mc(xi—yh x2—y2, Xi—x2)^Mc(^2,x), 
and the partial Fourier transform Mc(pi,p2,x) is defined 
with respect to £1, £2, one obtains an equation in which 
the full damping enters explicitly if the pit2 dependence 
of Mc is ignored; that is, if Mc (pi,p2)x) is replaced by 

Mc(x), one finds the equation 

dAdBMc(x) = -C(x)ll+16(g/fxyA'F(x)2-1Mc(x) (12) 

whose solution does not contain an essential singu­
larity.6 In contrast, the iteration of just the simplest 
crossed graph, in the approximation of treating TG as a 
function of momentum transfer only,4 produces (12) 
without the damping denominator. It should be em­
phasized that this is only an indication of damping; this 
example can certainly be criticized by noting, e.g., that 
the approximation of neglecting the pi,2 dependence is 
not compatible with the general form of (11). 

Perhaps the simplest and most relevant example 
follows from the "Born approximation" to (8), 

Ta(x;y)~Zl+16(g/fjLyAF*(x1-x2)-]-i 
XB(xi—x2)8(xi—yi)8(x2—y2), (13) 

where B(x) = ig2 [7,(1+75)] A [Y,(1 + 7s)] ^ A / ^ ) . 
Hence, treating Ta as a function of momentum transfer 
only, one has 

Tu(x)^B(x)ll+l6(g/^A^(x)J-\ (14) 

which is just the (unregularized) ladder graph result of 
Ref. 1. Here, however, the light cone damping has been 
explicitly generated by a class of irreducible crossed 
graphs. If the damping is such that (13) represents a 
decent approximation to (8), i.e., if subsequent cor­
rections are not divergent and are of higher order, one 
may give new credence to the famous factor1 of 
(—5M„/4/u2) in the zero momentum transfer limit of the 
Fourier transform of (14). 

Details of the elementary functional techniques useful 
in the formulation of these and related approximations 
will be given elsewhere. It is a pleasure to thank 
Professor M. Ruderman for his patient ear, and to 
acknowledge several informative discussions with Dr. 
K. Bardakci and Professor H. Suura. 

6 The equation 

dAdBF(x) = {(yA-x) ( T B ^ ) / M + ( T A - 7 B ) / M } 
X(1+7,)A(1+7,)BF(X) 

will have solutions of form 

F={F0(x*) + (yA'yB)(yA-x)(yB'x)F1(x>)}(l+y&)A(l+yi,)B 
which contain an essential singularity if near the light cone 
I~(x2)~a, a > 2 . This does not necessarily imply that the cor­
responding mass shell scattering amplitude will contain that 
singularity, since there is always the possibility of using diver­
gence-free combinations, or of finding gauge-type cancellations 
(depending upon the form of / ) . 


